Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neural Regen Res ; 19(12): 2673-2683, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595286

RESUMO

Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.

2.
Lab Anim (NY) ; 52(12): 332-343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017181

RESUMO

Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.


Assuntos
Meio Ambiente , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Animais de Laboratório , Comportamento Animal
3.
Pharmacol Rep ; 75(6): 1544-1555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814098

RESUMO

BACKGROUND: Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS: This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS: Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION: Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Adulto , Acetilcisteína/uso terapêutico , Acetilcarnitina/efeitos adversos , Larva , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
4.
Epilepsy Res ; 197: 107236, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801749

RESUMO

The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Pentilenotetrazol/toxicidade
5.
Lab Anim (NY) ; 52(10): 229-246, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709998

RESUMO

The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.


Assuntos
Hidrocortisona , Peixe-Zebra , Animais , Viés
6.
Int J Neuropsychopharmacol ; 26(2): 125-136, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239455

RESUMO

BACKGROUND: Altered redox state and developmental abnormalities in glutamatergic and GABAergic transmission during development are linked to the behavioral changes associated with schizophrenia. As an amino acid that exerts antioxidant and inhibitory actions in the brain, taurine is a potential candidate to modulate biological targets relevant to this disorder. Here, we investigated in mice and zebrafish assays whether taurine prevents the behavioral changes induced by acute administration of MK-801 (dizocilpine), a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist. METHODS: C57BL/6 mice were i.p. administered with saline or taurine (50, 100, and 200 mg/kg) followed by MK-801 (0.15 mg/kg). Locomotor activity, social interaction, and prepulse inhibition of the acoustic startle reflex were then assessed in different sets of animals. Zebrafish were exposed to tank water or taurine (42, 150, and 400 mg/L) followed by MK-801 (5 µM); social preference and locomotor activity were evaluated in the same test. RESULTS: MK-801 induced hyperlocomotion and disrupted sensorimotor gating in mice; in zebrafish, it reduced sociability and increased locomotion. Taurine was mostly devoid of effects and did not counteract NMDA antagonism in mice or zebrafish. DISCUSSION: Contradicting previous clinical and preclinical data, taurine did not show antipsychotic-like effects in the present study. However, it still warrants consideration as a preventive intervention in animal models relevant to the prodromal phase of schizophrenia; further studies are thus necessary to evaluate whether and how taurine might benefit patients.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Peixe-Zebra/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , N-Metilaspartato/farmacologia , Taurina/efeitos adversos , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Reflexo de Sobressalto , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Pharmacol Rep ; 74(4): 736-744, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35852770

RESUMO

BACKGROUND: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential. METHODS: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol. RESULTS: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects. CONCLUSION: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.


Assuntos
Curcumina , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Peixe-Zebra
8.
Eur J Neurosci ; 56(5): 4546-4557, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831240

RESUMO

Studies regarding the animals' innate preferences help elucidate and avoid probable sources of bias and serve as a reference to improve and develop new behavioural tasks. In zebrafish research, data obtained in behavioural assessments are often not replicated between research groups or even inside the same laboratory raising huge concerns about replicability and reproducibility. Among the potential causes that are not well considered, sexual differences can be a probable source of bias. Thus, this study aimed to investigate the male and female zebrafish directional and colour preferences in the plus-maze and T-maze behavioural tasks. Experiment 1 evaluated directional preference, and experiment 2 evaluated colour preference in a plus-maze task; experiment 3 evaluated preference between black or white in a T-maze task. Individual preferences were expressed as the percentage of time spent in each zone. Our results showed that male and female zebrafish demonstrated no difference in directional preference in the plus-maze task. Surprisingly, male and female zebrafish showed colour preference differences in the plus-maze task; males did not show any colour preference, while female zebrafish demonstrated a red preference compared to white, blue and yellow colours. Moreover, both male and female zebrafish demonstrated a strong black colour preference compared to the white colour in the T-maze task. Our findings characterized the spontaneous preference of male and female zebrafish for direction and colour, identifying possible biases and providing insights that contribute to the standardization of future protocols.


Assuntos
Percepção de Cores , Peixe-Zebra , Animais , Cor , Feminino , Masculino , Reprodutibilidade dos Testes
9.
Neurochem Res ; 47(8): 2307-2316, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35536434

RESUMO

Zebrafish larvae have been widely used in neuroscience and drug research and development. In the larval stage, zebrafish present a broad behavioral repertoire and physiological responses similar to adults. Curcumin (CUR), a major component of Curcuma longa L. (Zingiberaceae), has demonstrated the ability to modulate several neurobiological processes relevant to mental disorders in animal models. However, the low bioavailability of this compound can compromise its in vivo biological potential. Interestingly, it has been shown that micronization can increase the biological effects of several compounds. Thus, in this study, we compared the effects of acute exposure for 30 min to the following solutions: water (control), 0.1% DMSO (vehicle), 1 µM CUR, or 1 µM micronized curcumin (MC) in zebrafish larvae 7 days post-fertilization (dpf). We analyzed locomotor activity (open tank test), anxiety (light/dark test), and avoidance behavior (aversive stimulus test). Moreover, we evaluated parameters of oxidative status (thiobarbituric acid reactive substances and non-protein thiols levels). MC increased the total distance traveled and absolute turn angle in the open tank test. There were no significant differences in the other behavioral or neurochemical outcomes. The increase in locomotion induced by MC may be associated with a stimulant effect on the central nervous system, which was evidenced by the micronization process.


Assuntos
Curcumina , Peixe-Zebra , Animais , Comportamento Animal , Curcumina/farmacologia , Humanos , Larva , Locomoção , Peixe-Zebra/fisiologia
10.
Curr Neuropharmacol ; 20(3): 494-509, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588731

RESUMO

Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Esquizofrenia , Animais , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico , Mamíferos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Peixe-Zebra
11.
J Neurosci Res ; 99(11): 2844-2859, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496062

RESUMO

Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 µM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Anfetamina/farmacologia , Animais , Maleato de Dizocilpina/efeitos adversos , Endofenótipos , Feminino , Masculino , Camundongos , Ratos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/induzido quimicamente , Peixe-Zebra/fisiologia
12.
Neurosci Biobehav Rev ; 127: 761-778, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087275

RESUMO

Most preclinical behavioral assays use rodents as model animals, leaving room for species-specific biases that could be avoided by an expanded cross-species approach. In this context, zebrafish emerges as an alternative model organism to study neurobiological mechanisms of anxiety, preference, learning, and memory, as well as other phenotypes with relevance to neuropsychiatric disorders. In recent years, several zebrafish studies using different types of mazes have been published. However, the protocols and apparatuses' shapes and dimensions vary widely in the literature. This variation may puzzle researchers attempting to implement maze behavioral assays and challenges the reproducibility across institutions. This review aims to provide an overview of the behavioral paradigms assessed in different types of mazes in zebrafish reported in the last couple of decades. Also, this review aims to contribute to a better characterization of multi-behavioral assessment in zebrafish.


Assuntos
Natação , Peixe-Zebra , Animais , Comportamento Animal , Aprendizagem em Labirinto , Reprodutibilidade dos Testes
13.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 591-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768573

RESUMO

Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.


Assuntos
Acetilcisteína/análogos & derivados , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
14.
PeerJ ; 6: e4957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868300

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. In addition to its highly debilitating motor symptoms, non-motor symptoms may precede their motor counterparts by many years, which may characterize a prodromal phase of PD. A potential pharmacological strategy is to introduce neuroprotective agents at an earlier stage in order to prevent further neuronal death. N-acetylcysteine (NAC) has been used against paracetamol overdose hepatotoxicity by restoring hepatic concentrations of glutathione (GSH), and as a mucolytic in chronic obstructive pulmonary disease by reducing disulfide bonds in mucoproteins. It has been shown to be safe for humans at high doses. More recently, several studies have evidenced that NAC has a multifaceted mechanism of action, presenting indirect antioxidant effect by acting as a GSH precursor, besides its anti-inflammatory and neurotrophic effects. Moreover, NAC modulates glutamate release through activation of the cystine-glutamate antiporter in extra-synaptic astrocytes. Its therapeutic benefits have been demonstrated in clinical trials for several neuropsychiatric conditions but has not been tested in PD models yet. METHODS: In this study, we evaluated the potential of NAC to prevent the damage induced by 6-hydroxydopamine (6-OHDA) on motor, optomotor and morphological parameters in a PD model in larval zebrafish. RESULTS: NAC was able to prevent the motor deficits (total distance, mean speed, maximum acceleration, absolute turn angle and immobility time), optomotor response impairment and morphological alterations (total length and head length) caused by exposure to 6-OHDA, which reinforce and broaden the relevance of its neuroprotective effects. DISCUSSION: NAC acts in different targets relevant to PD pathophysiology. Further studies and clinical trials are needed to assess this agent as a candidate for prevention and adjunctive treatment of PD.

15.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 40(2): 169-173, Apr.-June 2018. graf
Artigo em Inglês | LILACS | ID: biblio-959225

RESUMO

Objective: N-acetylcysteine (NAC) is beneficial in psychiatric conditions, including schizophrenia. Patients with schizophrenia exhibit mesolimbic dopamine hyperfunction consequent to an endogenous sensitization process. This sensitization can be modeled in rodents by repeated exposure to psychostimulants, provoking an enduring amplified response at subsequent exposure. The aim of this study was to investigate the effects of NAC on amphetamine sensitization in mice. Methods: D-amphetamine was administered to C57BL/6 mice three times a week for 3 weeks; the dose was increased weekly from 1 to 3 mg/kg. NAC (60 mg/kg) or saline was administered intraperitoneally before saline or amphetamine during the second and third weeks. After a 4-week washout period, latent inhibition (LI) and the locomotor response to amphetamine 2 mg/kg were assessed. Results: Sensitization disrupted LI and amplified the locomotor response; NAC disrupted LI in control mice. In sensitized animals, NAC attenuated the enhanced locomotion but failed to prevent LI disruption. Conclusion: NAC warrants consideration as a candidate for early intervention in ultra-high risk subjects due to its safety profile and the relevance of its mechanism of action. Supplementing this proposition, we report that NAC attenuates sensitization-induced locomotor enhancement in mice. The finding that NAC disrupted LI incites a cautionary note and requires clarification.


Assuntos
Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Esquizofrenia/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Modelos Animais de Doenças , Anfetamina/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Camundongos Endogâmicos C57BL
16.
J Exp Biol ; 221(Pt 4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361609

RESUMO

Several studies have shown that manipulations to the housing environment modulate susceptibility to stress in laboratory animals, mainly in rodents. Environmental enrichment (EE) is one such manipulation that promotes neuroprotection and neurogenesis, besides affecting behaviors such as drug self-administration. Zebrafish are a popular and useful animal model for behavioral neuroscience studies; however, studies evaluating the impact of housing conditions in this species are scarce. In this study, we verified the effects of EE on behavioral (novel tank test) and biochemical [cortisol and reactive oxygen species (ROS)] parameters in zebrafish submitted to unpredictable chronic stress (UCS). Consistent with our previous findings, UCS increased anxiety-like behavior, cortisol and ROS levels in zebrafish. EE for 21 or 28 days attenuated the effects induced by UCS on behavior and cortisol, and prevented the effects on ROS levels. Our findings reinforce the idea that EE exerts neuromodulatory effects across species, reducing vulnerability to stress and its biochemical impact. Also, these results indicate that zebrafish is a suitable model animal to study the behavioral effects and neurobiological mechanisms related to EE.


Assuntos
Bem-Estar do Animal , Meio Ambiente , Estresse Fisiológico , Peixe-Zebra/fisiologia , Animais , Feminino , Abrigo para Animais , Hidrocortisona/metabolismo , Masculino , Modelos Animais , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
17.
Braz J Psychiatry ; 40(2): 169-173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29236922

RESUMO

OBJECTIVE: N-acetylcysteine (NAC) is beneficial in psychiatric conditions, including schizophrenia. Patients with schizophrenia exhibit mesolimbic dopamine hyperfunction consequent to an endogenous sensitization process. This sensitization can be modeled in rodents by repeated exposure to psychostimulants, provoking an enduring amplified response at subsequent exposure. The aim of this study was to investigate the effects of NAC on amphetamine sensitization in mice. METHODS: D-amphetamine was administered to C57BL/6 mice three times a week for 3 weeks; the dose was increased weekly from 1 to 3 mg/kg. NAC (60 mg/kg) or saline was administered intraperitoneally before saline or amphetamine during the second and third weeks. After a 4-week washout period, latent inhibition (LI) and the locomotor response to amphetamine 2 mg/kg were assessed. RESULTS: Sensitization disrupted LI and amplified the locomotor response; NAC disrupted LI in control mice. In sensitized animals, NAC attenuated the enhanced locomotion but failed to prevent LI disruption. CONCLUSION: NAC warrants consideration as a candidate for early intervention in ultra-high risk subjects due to its safety profile and the relevance of its mechanism of action. Supplementing this proposition, we report that NAC attenuates sensitization-induced locomotor enhancement in mice. The finding that NAC disrupted LI incites a cautionary note and requires clarification.


Assuntos
Acetilcisteína/farmacologia , Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Acetilcisteína/administração & dosagem , Anfetamina/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Behav Brain Res ; 317: 461-469, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725170

RESUMO

Anxiety disorders are highly prevalent and often result in poor quality of life. Available anxiolytics show significant adverse effects as well as partial efficacy in a sizable part of patients. Innovative treatments with more favorable risk-benefit ratio are sorely needed. A growing body of clinical data indicates the benefits of N-acetylcysteine (NAC) in psychiatric conditions. NAC modulates antioxidant, glutamatergic, inflammatory and neurotrophic pathways in the central nervous system, all of which are relevant to anxiety pathology. We evaluated the effects of NAC in mice models commonly used to characterize anxiolytic compounds. Male adult CF1 or BALB/c mice were treated (i.p.) acutely or subacutely (4 consecutive days) with NAC (60-150mg/kg) 60min before open field, light/dark, hole-board, social interaction, elevated T-maze or stress-induced hyperthermia tests. Diazepam (2mg/kg) was used as positive control. We found that NAC presents anxiolytic effects in all models, except for the elevated T-maze. Subacute treatments resulted in lower effective doses in comparison to acute treatment. The anxiolytic effects of NAC were comparable to diazepam. NAC is a safe and low cost medicine with suggested benefits in psychiatric conditions often presenting co-morbidity with anxiety. This study contributes evidence to support the validity of clinical trials with NAC in the context of anxiety disorders, especially considering the safety profile in comparison to the limitations of diazepam for long term treatment.


Assuntos
Acetilcisteína/uso terapêutico , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Análise de Variância , Animais , Ansiedade/complicações , Temperatura Corporal/efeitos dos fármacos , Adaptação à Escuridão/efeitos dos fármacos , Diazepam/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Febre/etiologia , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fatores de Tempo
19.
Chronobiol Int ; 32(2): 248-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25286136

RESUMO

Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30 mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.


Assuntos
Acetilcisteína/farmacologia , Antidepressivos Tricíclicos/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Imipramina/farmacologia , Acetilcisteína/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Corticosterona/sangue , Depressão/fisiopatologia , Modelos Animais de Doenças , Interleucina-6/sangue , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos , Fotoperíodo , Descanso , Comportamento Social , Temperatura , Fatores de Tempo
20.
Schizophr Res ; 155(1-3): 109-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24725851

RESUMO

Treating individuals at risk to develop schizophrenia may be strategic to delay or prevent transition to psychosis. We verified the effects of N-acetylcysteine (NAC) in a neurodevelopmental model of schizophrenia. C57 mice were reared in isolation or social groups and treated with NAC from postnatal day 42-70; the locomotor response to amphetamine was assessed at postnatal day 81. NAC treatment in isolated mice prevented the hypersensitivity to amphetamine, suggesting neuroprotection relevant to striatal dopamine. Considering its safety and tolerability profile, complementary studies are warranted to further evaluate the usefulness of NAC to prevent conversion to schizophrenia in at-risk individuals.


Assuntos
Acetilcisteína/uso terapêutico , Anfetamina/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Sequestradores de Radicais Livres/uso terapêutico , Hipercinese/induzido quimicamente , Hipercinese/prevenção & controle , Isolamento Social/psicologia , Acetilcisteína/farmacologia , Análise de Variância , Animais , Sistema Nervoso Central/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...